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Abstract
Non-relativistic quantum mechanics for a free particle is shown to emerge
from classical mechanics through an invariance principle under transformations
that preserve the Heisenberg position–momentum inequality. These
transformations are induced by isotropic space dilations. This invariance
imposes a change in the laws of classical mechanics that exactly corresponds
to the transition-to-quantum mechanics. The Schrödinger equation appears
jointly with a second nonlinear equation describing non-unitary processes.
Unitary and non-unitary evolutions are exclusive and appear sequentially in
time. The non-unitary equation admits solutions that seem to correspond to the
collapse of the wavefunction.

PACS number: 03.65.Ta

1. Introduction

Quantization of classical mechanics is generally not considered as deriving from an invariance
principle. While relativity requires the invariance of the laws of nature under spacetime
transformations, quantum mechanics is usually presented as deriving from prescriptions
relating classical quantities to Hermitian operators acting on Hilbert space. The former theory
is deeply rooted in spacetime geometry, the latter is not. This deep difference is perhaps
one of the main obstacles hampering the construction of a coherent theoretical framework for
quantum gravity.

In contrast with this state of matter, very few attempts have been made to investigate the
possibility that quantum mechanics could be derived from an invariance principle or, more
generally, from spacetime geometry. Among these works, the most relevant are the theory
developed by Nottale based on a fractal spacetime and the principle of scale relativity, and the
approach of Santamato and Castro relying on a Weyl geometry for spacetime.

Nottale and Collaborators [1–3] are developing a general theoretical framework in which,
as said above, spacetime is supposed to have a fractal geometry. A second fundamental axiom

1751-8113/07/174567+18$30.00 © 2007 IOP Publishing Ltd Printed in the UK 4567

http://dx.doi.org/10.1088/1751-8113/40/17/012
mailto:lbrenig@ulb.ac.be
http://stacks.iop.org/JPhysA/40/4567


4568 L Brenig

of this theory is a generalization of the relativity principle to the scale transformations. The
laws of nature must be valid in every coordinate systems, whatever their state of motion or of
scale. We share completely this second axiom in our work, though, our implementation of it
is different.

Let us dwell more in details on Nottale’s theory. The assumption of a fractal structure
of spacetime reflects the fact that trajectories of elementary quantum particles are of fractal
dimension 2. This corresponds to the property first discovered by Feynman [4] that quantum
trajectories, if one takes their existence for granted, are of fractal dimension 2. The non-
differentiability of the trajectories on such a fractal space results in the existence of two
velocity vectors at each point of the trajectory, the forward and backward tangent vectors.
Their very existence permits a derivation of the Schrödinger equation using a scheme that is
reminiscent of Nelson’s stochastic mechanics [5]. This is natural as the Brownian motion on
which stochastic mechanics is based generates trajectories that are also of fractal dimension
two. Such trajectories could indeed reflect the fractality of the space that bears them instead
of resulting from a succession of random collisions. The non-differentiability of space and
the bi-velocity structure of trajectories that follows from it lead to the introduction by Nottale
of a scale-covariant complex time derivative. This operator is a complex combination of the
forward and backward derivatives associated with Brownian diffusion. The replacement of
usual time derivatives by scale-covariant ones in the laws of classical mechanics generates
the quantum laws and the Schrödinger equation. This method is not limited to non-
relativistic quantum mechanics but works also for the Klein–Gordon [6] and the Dirac
equations [7]. It also provides interesting results in quantum field theory and high energy
physics [8].

As already said, scale relativity corresponds to the invariance of the laws of physics
under scale transformations [2] linking observers with different resolutions or scale states. In
Nottale’s theory, these transformations act on each couple of variables that are a physical field
and its anomalous dimension. These variables are transformed under a dilatation or contraction
of the observer’s resolution. Improving a demonstration of the Lorentz transformations
proposed by Levy–Leblond [9], Nottale assumes that it can also be applied to relativity of the
scale and obtains an explicit form for the scale transformations. A strong consequence of these
transformations is the prediction of an absolute and invariant minimum limit for lengths and
times which is tentatively related to the Planck scale. Comparisons of these transformations
and their consequences with those proposed in our work are discussed in the sequel of the
present article.

The other main geometric approach to quantum mechanics is that developed mainly by
Santamoto [10, 11], Castro [12] and other researchers. Their theory is based on the assumption
that space obeys a Weyl geometry. This, briefly said, corresponds to the hypothesis that the
length of a vector whose origin is displaced parallely to itself along an arbitrary curve in
such a space, changes along its path. Such spaces are not flat and are characterized by
their Weyl curvature. The approach of Santamato and Castro involves from the start a
probabilistic ingredient by assuming an initial statistical ensemble of positions for the particle.
The dynamical law for a free particle is then derived from a variational problem associated
with a functional which is essentially the expectation over the position probability ensemble
of the classical Lagrangian plus a supplementary term representing a coupling to the Weyl
curvature of the space. As a result, the change in the length of a parallely displaced vector
can be related to the gradient of the logarithm of the position probability density. The above
authors are, then, able to show that the quantum potential [13] is proportional to the Weyl
scalar curvature of the space. This, in turn, leads to an elegant derivation of the Schrödinger
equation.
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The two theories described above involve a common element: the importance they ascribe
to scale transformations for understanding quantum mechanics. This is also a main aspect of
the work presented in this article.

Let us now turn to the results of the present paper. The theory we propose here also
relies on scale transformations between observers with different precisions and assumes the
invariance of the laws of nature under these transformations. Observers or frames of references
are characterized not only by the origins of their space and time coordinates, the relative
direction of their respective axis and their relative velocities, but also by the relative accuracy
or resolution of their measurements. Precision of measurements is, consequently, embodied
in geometry and the laws of nature must be invariant under precision scale transformations.
In other words, quantum mechanics is viewed here as a kind of relativity theory under scale
transformations, like in Nottale’s theory. Yet, in contrast with the latter, in our approach these
transformations are simple homogeneous and isotropic dilatations of position variables, i.e.
in Nottale’s terminology, they are ‘Galilean’ scale transformations. They act as usual space
dilatations on fields. Hence, in our approach a couple made of a field and its anomalous
dimension does not undergo a Lorentzian-like scale transformation like those that are obtained
in the work of Nottale.

Our only requirement is the invariance of the Heisenberg inequality under position space
dilatations. As shown in the following, the action of these transformations on the classical
definitions of the statistical uncertainties of the position and momentum of a free particle does
not preserve the Heisenberg position–momentum inequality. As a consequence, we have to
impose a modification of the definition of these uncertainties. Let us insist on the fact that
this does not imply a change in the way the fundamental fields transform but, merely, in
the way two global quantities, the statistical dispersions of position and momentum, that are
functionals of these fields, transform. Since our description is based on fields—for a free
particle these are its position probability density and its action—defined on the position space,
the only statistical moment that can be modified is the one characterizing the dispersion of
momentum. Indeed, the only stochastic element assumed here concerns the position of the
particle. Though, the quadratic position dispersion can be defined in an infinity of ways, all
of these definitions must be homogeneous functionals of degree 1 of the position probability
density only and must have physical dimension of the square of a length. These properties
impose a unique transformation rule under spatial dilatations for the position dispersion as
the transformation of the position probability density is constrained by the conservation of
normalization. This is not the case for the momentum dispersion as momentum, in position
space, is a derived quantity. Hence, the only statistical quantity that can be modified in order
to keep the Heisenberg inequality invariant under dilations is the momentum uncertainty. This
leads to a deep change in the dynamical law. Indeed, since the quadratic momentum dispersion
is a linear function of the kinetic energy, its modification entails a change in the definition
of the kinetic energy of the particle. As explained below and in the following section, the
modification is uniquely determined and consists in a supplementary term which happens
to be exactly the quantum potential [13], thereby leading to a derivation of the Schrödinger
equation.

However, this is not the unique result. Our theory does not only recover the unitary
dynamical evolution generated by the Schrödinger equation. It also provides a non-unitary
and nonlinear evolution equation for the wavefunction. This equation belongs to a large family
of nonlinear Schrödinger equations known as the Doebner–Goldin family of equations [14].
The system of both Schrödinger and the new equations is invariant under scale transformations,
provided time is also transformed in a specific way. At first sight, the non-unitary evolution
seems to unfold in a time variable that is different from that of the unitary evolution. However,
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it is argued that the two types of evolutions can only appear sequentially for a particle and,
consequently, the two time parameters are the same but the natures of the two kinds of
dynamical processes are fundamentally different. Though more work is needed, we present
some reasons to believe that the non-unitary dynamics corresponding to the new equation
could be related to processes like the collapse of the wavefunction. Arguments in favour of
this interpretation are the followings. First, the non-unitary equation can be exactly linearized
into a couple of forward and backward pure diffusion equations [15]. This corresponds
rigorously to the so-called Euclidean quantum mechanics. Next, the system of forward and
backward diffusion equations is shown to admit a class of solutions corresponding to a couple
of prescribed initial and final conditions as indicated in an early article by Schrödinger [18]
and more recently rigorously proved by Zambrini and collaborators [19, 20]. Hence, among
the solutions of this system there exists a subset of possible dynamical evolutions, the so-called
Bernstein Markovian processes [21], starting from a specified initial state or wavefunction and
reaching a reduced state corresponding to a measurement process. This is possible for the
non-unitary evolution equation but not, of course, for the unitary, Schrödinger equation. In
this scheme, dynamical evolution could be seen as a succession of unitary and non-unitary
processes, respectively, described by the two quantum equations.

Before ending this introduction, we should quote another important approach related to
the question of the emergence of quantum mechanics, that of Hall and Reginatto [16, 17]. This
is even more necessary as we are using some important results of their work in our derivation.
These authors assume that uncertainty is the essential property in which quantum and classical
mechanics differ. This point of view leads them to postulate the existence of non-classical
fluctuations of the momentum of a physical system. They assume, furthermore, that these
fluctuations are entirely determined by the position probability density function. This enables
them to derive the quantum dynamical law from the classical mechanics of a non-relativistic
particle. To do so, they need two supplementary postulates that are causality and the additivity
of the energy of N non-interacting particles. These last two postulates are also necessary in our
derivation. Both their theory and ours allocate a fundamental importance to the Heisenberg
uncertainty principle. Yet, the difference between the two approaches resides in the fact that
the former needs to postulate the existence of non-classical momentum fluctuations and to
assume that their statistical amplitude only depends on the position probability density. In
contrast, in our work, these two postulates are derived from an invariance principle under
scale transformations affecting the position and momentum uncertainties and preserving the
Heisenberg inequality. These differences and similarities will be analysed more deeply in the
course of the present paper.

The course of this paper is the following. In section 2, we introduce our main postulate
stating that the laws of nature must be invariant under scale transformations. Among the laws
of physics, the Heisenberg position–momentum inequality must be kept invariant by these
transformations. We, then, deduce from that postulate the transformation rules of the position
and momentum uncertainties. In section 3, we show that the classical mechanical definition
of the momentum uncertainty is incompatible with these transformations. We are, thus, led to
modify the classical definition of the momentum uncertainty in order to satisfy the imposed
transformation rules. This modification is constrained by the transformations rules derived
from our postulate and by the Hall–Reginatto conditions of causality and additivity of the
kinetic energy of a system of non-interacting particles. This leads to a complete specification
of the functional dependance of the supplementary term corresponding to the modification.
The latter turns out to be proportional to the quantum potential. The passage from classical-
to-quantum mechanics, thus, is fulfilled as the Schrödinger equation is a simple consequence
of this result. Section 4 is devoted to the study of the variance under space dilations of the
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Schrödinger equation. It is shown that the latter is invariant jointly with another evolution
equation for the wavefunction that is nonlinear and describes non-unitary processes in a new
time parameter. Under a general space dilation and provided a specific transformation of
the two times is performed, the Schrödinger equation and the new equation are invariant. In
section 5 we discuss the possible physical meaning of the nonlinear Schrödinger equation
obtained in the precedent section. We first show that the time parameter associated with it
is not independent from the usual time appearing in the linear Schrödinger. The evolutions,
respectively, described by the linear and nonlinear equations must be successive. Hence, the
only difference between the two times is a translation of their origins. Basing our arguments
on an idea initiated by Schrödinger, we also show that the new equation admits a class of
solutions that could represent processes of wavefunction collapses. The paper ends with
general conclusions.

2. Space dilatations and main postulate

Let us consider a non-relativistic spinless free particle of mass m in the three-dimensional
Euclidean space. In that space, observers are supposed to perform position measurements on
the particle with instruments of limited precision. Hence, at a given instant the exact position of
the particle is a random variable distributed with a probability density ρ(x). Limited precision
on position measurement induces, in turn, uncertainty on momentum. Thus, an observer is
characterized by parameters denoting the statistical position and momentum uncertainties of
its instruments. These parameters, let us call them �xk and �pk , for k running from 1 to 3,
are not uniquely defined as there exist many statistical measures of fluctuations for a given
probability distribution. For example, �xk

2 could be defined as the centred second moment
of a given position probability density ρ(x) or as the Fisher length [23] associated with the
same probability density.

In our picture, observers characterized by different values of their measurement
uncertainties are related by space dilations. Our main postulate is the following: under
dilations of space coordinates, the laws of physics must be invariant. In particular, the
Heisenberg position–momentum inequality

�xk
2�pk

2 � h̄2

4
(1)

must be invariant for any of the three values of k.
This means that the parameters �xk and �pk must transform under spatial dilations in

such a way that the above Heisenberg inequalities are kept invariant. In other words, the
Heisenberg inequality is a fundamental invariant for the changes of precision relating all the
observers, and precision becomes part of the geometrical description of the physical space.

To avoid proliferation of indices, we drop in the following index k except in places where
this would lead to an ambiguity. However, one must keep in mind that, when they appear in
the same formulae or system of equations, �x and �p, respectively, represent components
labelled by the same value of index k.

In order to implement the above postulate, let us now study its consequences. More
precisely, let us construct the transformation law that the quantity �x2�p2 should undergo in
order to fulfil the postulate.

Under an isotropic spatial dilatation of parameter α, x → e−α/2x, where α belongs to R,
the product �x2�p2 will transform as

�x ′2�p′2 = f (�x2�p2, α). (2)
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In a succession of a dilatation of parameter α1 followed by a second one of parameter α2,
one should get

f (f (�x2�p2, α1), α2) = f (�x2�p2, α1 + α2). (3)

Note the additive character of the parameter α. It results from the additivity of this
parameter in the spatial dilations. This property also implies the commutativity of the two
transformations of parameters α1 and α2.

The identity transformation should continuously be reached when taking the limit
α → 0:

lim
α→0

f (�x2�p2, α) = �x2�p2. (4)

Furthermore, our postulate imposes the following condition:

lim
α→∞ f (�x2�p2, α) = h̄2

4
(5)

for any values of �x2�p2 � h̄2

4 .
The above conditions amount to impose a one-parameter continuous Abelian group

structure for the set of these transformations along with the existence of a fixed point, h̄2

4 ,
for them.

These conditions are insufficient to characterize a unique form for the function
f (�x2�p2, α). We shall, henceforth, resort to introducing the following supplementary
but natural constraint. In the limit h̄ → 0, the above transformation is expected to reduce to

�x ′2�p′2 = e−2α�x2�p2. (6)

The reason for this form goes as follows. Under dilations x → e−α/2x, the quantity
�x2, whatever the choice made among its different possible definitions, as discussed in the
introduction, must transform as

�x ′2 = e−α�x2. (7)

This law should not change in the limit h̄ → 0 as the definition of �x2 should not
be affected by the passage from classical-to-quantum mechanics as already discussed in the
introduction. The above transformation of �x2 comes from the fact that under a x → e−α/2x

dilation, the position probability density ρ(x) transforms as

ρ ′ (x) = e
3α
2 ρ

(
e

α
2 x

)
. (8)

This transformation law preserves the normalization of the probability density ρ [22].
Let us now consider the transformation law for �p2. Remember that by this notation we
denote the quadratic uncertainty of a given component of the vector p. The definition of
this quantity for a classical particle whose initial position is known only statistically via the
position probability density ρ is given by

�pcl
2 =

∫
d3x ρ(∂s)2 −

(∫
d3x ρ∂s

)2

, (9)

where ∂ denotes any component of the 3D spatial gradient corresponding to the component of
�pcl , we are considering in the above equation. In equation (9), s(x) represents the classical
action of the particle. We shall consider the following transformation of s(x) under spatial
dilatations:

s ′(x) = e−αs
(
e

α
2 x

)
. (10)

This transformation of the action is justified by the fact that the classical Hamilton–Jacobi
equation for a free particle of mass m and the continuity equation
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∂t s = −|∇s|2
2m

(11)

∂tρ = −∇.

(
ρ

∇s

m

)
(12)

are kept invariant under isotropic dilations of space coordinates, x ′ = e−α/2x, provided s(x)
and ρ(x) transform as stated above. The above transformations are different from those usually
considered in studies of the conformal invariance of the Hamilton–Jacobi equation [30, 31]
where time is also dilated.

Turning back with these results to the transformation law for the classical definition of
�pcl

2, we easily find

�p′
cl

2 = e−α�pcl
2. (13)

This leads, of course to

�x ′2�p′
cl

2 = e−2α�x2�pcl
2. (14)

The above reasoning justifies our previous constraint (6) on the limiting form of the
function f (�x2�p2, α) when h̄ → 0. The dependence in �x2�pcl

2 in that limit is
linear. Owing to this, we shall assume a linear dependence on �x2�p2 for the function
f (�x2�p2, α):

�x ′2�p′2 = g(α)�x2�p2 +
h̄2

4
k(α). (15)

Though the linearity property introduced above is not completely demonstrated by the
previous reasoning, we use it for its simplicity with the hope that further work will justify
it completely. The above conditions provide two coupled functional equations for the two
functions g(α) and k(α):

g(α1)g(α2) = g(α1 + α2) (16)

g(α2)k(α1) + k(α2) = k(α1 + α2). (17)

Using also the equation obtained from the permutation of indices 1 and 2 in the last
equation along with the two equations above, we are led to the following result:

�x ′2�p′2 = e−nα�x2�p2 +
h̄2

4
(1 − e−nα). (18)

The constant n is then found to be equal to 2 by using the limiting form (6) of the
transformation for h̄ → 0 and we get

�x ′2�p′2 = e−2α�x2�p2 +
h̄2

4
(1 − e−2α). (19)

Now, with the transformations on �x2 and on �x2�p2 found above, one can easily derive
the transformation rule for �p2. Finally, our postulate leads to the following transformations
for �x2 and �p2:

�x ′2
k = e−α�xk

2 (20)

�p′
k

2 = e−α�pk
2 +

h̄2

4
(eα − e−α)

1

�xk
2 , (21)
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where the parameter α is any real number. Exceptionally, we have restored index k running
from 1 to 3 in the above formulae in order to stress again the fact that these laws are defined
componentwise.

The group property of these transformations is easily verified. The asymptotic behaviours
under these transformations are also readily checked. When α → +∞, one has �x ′2�p′2 →
h̄2

4 . If �x2�p2 is already equal to h̄2

4 , then the product �x ′2�p′2 keeps the value h̄2

4 for any

value of α. For α → −∞,�x ′2�p′2 → +∞ for any value of �x2�p2 � h̄2

4 .
These above remarkable properties bear some similarities with the Lorentz

transformations. In analogy with the fact that the velocity of light constitutes an upper
limit for the velocities of material bodies, the parameter h̄2

4 represents a lower limit for the
product of uncertainties �x2�p2. This product plays a role similar to velocity in the Lorentz
transformations. Latter in the paper, the analogy will appear even more striking.

At this level, a comparison with the scale relativity theory developed by Nottale
can be made. Though, the fundamental scope of his theory and ours are the same, its
implementation presents differences. The scale transformations laws of Nottale’s theory are
given in formulae (6.8.1a) and (6.8.1b) of [2]. Formula (6.8.1a) concerns the dilatation
ratio while (6.8.1b) concerns a scale-dependent field and its anomalous dimension in the
sense of the renormalization group theory. Transformation (6.8.1a) gives the composition of
two successive dilations, while (6.8.1b) is a scale transformation that can be applied to the
position vector which, itself, can be treated as a field with its own anomalous dimension.
These transformations are not identical to the classical dilations x → e−α/2x used in our
approach. The latter correspond to ‘Galilean’ scaling transformations in Nottale’s terminology.
Moreover, the couple of variables that mix up in the ‘Lorentzian’ scale transformations of
Nottale are a field and its anomalous dimension. In contrast, the couple of variables that
are mixed up in our scale transformations are the uncertainties associated with a couple of
classically canonical variables that are position and momentum.

Let us come back to the account of our results. As we already mentioned, the definitions
of �x and of �p as functionals of s(x) and ρ(x) are still unspecified. Their functional forms are
derived in the following section from the condition that they transform under spatial dilations
as postulated above.

3. Recovering the quantum law of dynamics

We now show that our postulate of the fundamental role of transformations (20), (21) imposes
a radical modification of the laws of dynamics that precisely corresponds to the passage from
classical-to-quantum mechanics.

To do so, let us start from the classical mechanical description of a free non-relativistic
particle of mass m in the 3D Euclidean space. As we did in the previous section, in order
to take into account from the beginning the finite precision of the observer, we introduce
an ensemble of initial positions characterized by the probability density ρ(x). This function
together with the classical action of the particle, s(x), is the basic variable of the formalism.
They are fields and due to this classical mechanics appears here as a field canonical theory
[24]. Let us stress that by assuming an initial position probability density we introduce only
classical fluctuations of the position variable in the theory.

The time evolution of any functional of type

A =
∫

d3x F(x, ρ,∇ρ,∇∇�, . . . , s,∇s,∇∇s, . . .) (22)
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of the two variables ρ and s and their spatial derivatives, at least once functionally differentiable
in terms of ρ and s, is given by

∂tA = {A,Hcl}, (23)

where

Hcl =
∫

d3x
ρ|∇s|2

2m
(24)

is the classical Hamiltonian functional and

{A,B} =
∫

d3x

[
δA

δρ(x)

δB
δs(x)

− δB
δρ(x)

δA
δs(x)

]
, (25)

where δ
δρ(x)

and δ
δs(x)

are functional derivatives. The above functional Poisson bracket endows
the set of functionals of type (22) with an infinite Lie algebra structure G.

Any functional belonging to G, and Hcl is one of them, generates a one-parameter
continuous group of transformations. The time transformations are generated by Hcl.
Equation (23) when applied to ρ(x) and s(x), respectively, yields the continuity equation
and the Hamilton–Jacobi equation

∂tρ = −∇ ·
(

ρ
∇s

m

)
(26)

∂t s = −|∇s|2
2m

, (27)

where the gradient ∇s is the classical momentum of the particle. It is a random variable over
the ensemble of initial conditions corresponding to ρ(x).

Now let us consider the group of space dilatations x → e− α
2 x and its action on ρ and s:

ρ ′(x) = e
3α
2 ρ

(
e

α
2 x

)
, s ′(x) = e−αs

(
e

α
2 x

)
, (28)

where α is any real number. We have already discussed these transformations in the previous
section. The important point to keep in mind is that they keep the dynamical equations (26)
and (27) invariant.

To simplify the description, let us assume that the average momentum of the particle is
vanishing. This corresponds to a particular choice of a ‘comoving’ frame of reference but, by
no means, reduces the generality of our results. The general results can, indeed, be retrieved
by performing an arbitrary Galilean transformation. In this particular frame, the classical
definition of the quadratic uncertainty for a given component k of the momentum is given by

�pcl,k
2 =

∫
d3x ρ(∂ks)

2, (29)

We now drop index k, as in section 2. Under transformations (28), �pcl
2 transforms as

�p′
cl

2 = e−α�pcl
2. (30)

Also, as discussed earlier, any definition of the scalar quadratic position uncertainty
measuring the dispersion of ρ(x), �x2, transforms componentwise as

�x ′2 = e−α�x2. (31)

Here, as in equations (20) and (21), the quantity �x2 still remains unspecified. Not
surprisingly, equation (30) shows that the classical quadratic momentum uncertainty does
not obey the transformation rule (21) prescribed by our postulate. As already discussed in
section 2, the transformation law (30) corresponds to the first term on the right-hand side
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of equation (21). As a consequence, the requirement of transformations (20) and (21) to be
fundamental compels us to modify definition (29) of �pcl

2 in order to get a quantity �p2

whose variance satisfies equation (21). This equation involves the constant h̄2. Moreover, the
new definition of �p2 should reduce to the classical one when h̄ tends to zero. Indeed, in
classical mechanics the changes in the accuracy of position and momentum measurements are
not constrained by the Heisenberg inequality. This is clear when considering equation (14).
The desired modification to definition (29) should, thus, consists in adding a supplementary
term proportional to h̄2. Indeed, the new quantity �p2 must transform under isotropic dilations
x → e−α/2x and laws (8), (10) in such a way that, at least, the first term of the right-hand side
of equation (19) is retrieved.

Let us translate this constraint by adding a new term to the above definition of �pcl
2 and

get a new expression for the quadratic momentum uncertainty which, from now on, we shall
denote by �pq

2:

�pq,k
2 =

∫
d3x ρ(x)(∂ks(x))2 + h̄2Qk, (32)

where index k runs from 1 to 3. We shall drop this index k in the following and restore it only
when it is necessary for clarity.

We now impose the condition that the spatial dilations and rules (8), (10) should transform
the quantity �pq

2 as prescribed by equations (20), (21), and prove that this reduces the set
of possible functional forms of Q. First, note that following definition (29), the sum of the
quadratic uncertainties (29) for the three components of the classical momentum is proportional
to the classical energy functional (24). This is due to our choice of a comoving inertial reference
frame. It is natural to consider that this proportionality is preserved for the new definition of
the quadratic momentum uncertainty �pq

2 we are looking for. It is also reasonable to assume
that the energy functional should belong to the Lie algebra G. Hence, the new term Q must
also be a functional belonging to the Lie algebra G, that is, it must be of the form (22). This
conclusion is, of course, valid for the three-components Qk .

Let us now apply the dilatation with rules (8) and (10) to definition (32) of �pq
2. This

leads to

�p′
q

2 = e−α�pcl
2 + h̄2Q′

, (33)

where Q′
is the transform of Q. Adding and subtracting an appropriate term, e−αh̄2Q, to the

right-hand side of equation (33) and using again definition (32), we get

�p′
q

2 = e−α�pq
2 + h̄2(Q′ − e−αQ). (34)

The identification of this equation with equation (21) imposes

Q′ − e−αQ = 1

4�x2 (eα − e−α), (35)

which, using equation (20), can be transformed into

Q′ − 1

4�x
′2 = e−α

(
Q − 1

4�x2

)
. (36)

This equation possesses an infinity of solutions. However, its form indicates the existence
of a relation between Q and �x2 that is scale independent

Qk = 1

4�xk
2 , (37)

where index k has temporally been restored. This particular solution is the only one for which
the relation between �pq

2 and �x2 is independent from the scale exponent α. Furthermore,
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the sum of �pq,k
2 for the three values of index k should be proportional to the Hamiltonian

functional, the generator of dynamics. One would, thus, expect that the latter keeps the same
form in term of �x2, independently of α. In other words, an observer should not be able to
infer the value of α by doing only internal measurements of motion. This argument justifies
the choice of solution (37) on physical ground.

We are, thus, led to the conclusion that the supplementary term necessary to obtain a
definition of �pq

2 that is compatible with the dilations and (20), (21) is inversely proportional
to �x2, equation (37). As this quantity only depends on the probability density ρ(x), it is
obvious that Q must be a functional of the form (22) that does not depend on the action s(x)
or any of its spatial derivatives.

One should keep in mind, at this level, that the precise definition of the quadratic position
uncertainty, �x2, that appears in transformations (20), (21) and in relation (37) is still
undetermined at this level. This ambiguity is now lifted by considering the work of Hall
and Reginatto [16, 17] already mentioned in the introduction. Their fundamental statement
is the following. In order to explain the transition from classical-to-quantum mechanics they
assume that the classical momentum ∇s(x) is affected by non-classical fluctuations represented
by an additional random variable of zero average and without correlation with ∇s(x). As a
consequence, the scalar quadratic momentum uncertainty contains the classical term �pcl

2

plus a correction representing the quadratic average of the above fluctuations. Let us stress
that this is equivalent to our addition of a supplementary term h̄2Q in equation (32), although,
the reason invoked by Hall and Reginatto for adding this new contribution is completely
different from ours. In our approach, this term comes from the necessity for the quadratic
momentum uncertainty to obey the transformation law (21) under dilatations, while in the
Hall–Reginatto theory, fluctuations are just postulated to exist. More precisely, the trace of
the statistical covariance of their fluctuations corresponds to the sum of our supplementary
terms Qk for the three values of index k. The next step in the Hall–Reginatto derivation is
the assumption that this additive term is only determined by the uncertainty in position, i.e. it
only depends functionally on ρ(x). Moreover, this term is assumed to behave like the inverse
of �x2 under dilatations. These two last assumptions constitute what they call the exact
uncertainty principle. By comparison, in our approach these two assumptions are derived
from the requirement for �pq

2 to transform as equations (20) and (21) under space dilatations
and from the requirement that the value of α could not be known by an observer by using only
measurements made in his own frame of reference.

At this level, both our supplementary termQ and the quadratic average of Hall–Reginatto’s
fluctuations have the same characteristics. We, thus, can now follow the rest of the Hall–
Reginatto reasoning in order to get a complete determination of the functional expression of
this term. To do so, they require two more principles that are very natural. Let us summarize
them. The first one is causality. As we already stressed, the quadratic momentum uncertainty
is related to the energy functional which, in turn, is the generator of dynamical motion. In our
comoving frame of reference, this amounts to

Hq =
3∑

k=1

�pq,k
2

2m
. (38)

The causality condition means that the equations of motions generated by Hq should be
causal, i.e. the existence and unicity of their solutions should require only the specification
of ρ(x) and s(x) on an initial surface. This condition, combined with the exact uncertainty
principle, enables Hall and Reginatto to show that Q should only depend on the first-order
space derivatives of ρ(x).
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The second principle required in the Hall–Reginatto theory is the so-called independence
condition; in other words, the Hamiltonian of N non-interacting particles must be the sum of
N terms. Each of these terms represents the kinetic energy of a particle and only depends on
the variables of that particle.

Using these principles, Hall and Reginatto are able to prove that the unique functional
form for Qk is

Qk = β

∫
d3x(∂kρ(x)1/2)

2
, (39)

where k runs from 1 to 3. Next, the constant β is shown to be equal to 1 in order to find, using
equation (38), the quantum Hamiltonian functional which in the variables ρ(x) and s(x) reads

Hq =
∫

d3x

[
ρ(x)|∇s(x)|2

2m
+

h̄2

2m
|∇ρ(x)1/2|2

]
. (40)

Simultaneously, we obtain the complete determination of �xk that appears in
equations (20) and (21) by using relations (37) and (39). Interestingly, what is obtained
is not the usual definition corresponding to the second-order centred statistical moment of the
component k of the position vector x. The definition obtained here is, up to a numerical factor,
proportional to the classical Fisher length [22, 23] associated with the position probability
density ρ(x).

The functionalHq generates the quantum time evolution of any functionalA of the algebra
G via equation (23) where Hcl is to be replaced by Hq . When A is specialized to s(x) an easy
calculation leads to a modified Hamilton–Jacobi equation

∂t s = −|∇s|2
2m

+
h̄2

2m

∇2ρ1/2

ρ1/2
, (41)

while the continuity equation for ρ(x), equation (26), is preserved. The supplementary
term appearing in the Hamilton–Jacobi equation can be recognized as the so-called quantum
potential [13]. Due to the presence of this typically quantum contribution, the Schrödinger
equation is readily obtained from equation (41) and the continuity equation (26) by performing
the transformation from the variables ρ(x) and s(x) to the wavefunction variables ψ and ψ∗:

ψ = ρ1/2 eis/h̄. (42)

Note that in the algebra defined by the Poisson bracket (25), the above transformation is
canonical.

Let us summarize. We have derived the quantum evolution law for a free non-relativistic
spinless particle in 3D flat space from the requirement that the quadratic uncertainties on
position and momentum should satisfy the transformations rules (20) and (21) together with
the causality and independence principles. The form in which we obtain quantum mechanics
is that of the canonical field theory which has been introduced and studied from different
points of view by various authors [25–28]. None of these authors, however, derives quantum
mechanics from an invariance principle as we do here.

4. Scale invariance and the non-unitary evolution equation

Let us now consider the variance of the Schrödinger equation under the spatial dilatations and
transformation laws (8), (10). By adding and subtracting adequate terms, the transformation
of the Hamiltonian functional (40) under these transformations can be cast in the explicit



Is quantum mechanics based on an invariance principle? 4579

form

H′
q[ρ, s,∇ρ,∇s] = cosh α

∫
d3x

[
ρ(x)|∇s(x)|2

2m
+

h̄2

2m
|∇ρ(x)1/2|2

]

− sinh α

∫
d3x

[
ρ(x)|∇s(x)|2

2m
− h̄2

2m
|∇ρ(x)1/2|2

]
, (43)

where H′
q , as a functional of ρ(x), s(x) and their respective spatial derivatives, is obtained

from

H′
q[ρ, s,∇ρ,∇s] ≡ Hq[ρ ′, s ′,∇ρ ′,∇s ′] (44)

in which ρ ′, s ′,∇ρ ′,∇s ′ are derived from equations (8), (10).
The first term on the right-hand side of equation (43) is proportional to Hq[ρ, s,∇ρ,∇s],

while the second term contains a factor that is similar to Hq[ρ, s,∇ρ,∇s] up to a sign in the
integral. Let us call Kq this factor

Kq[ρ, s,∇ρ,∇s] ≡
∫

d3x

[
ρ(x)|∇s(x)|2

2m
− h̄2

2m
|∇ρ(x)1/2|2

]
. (45)

The physical dimension of Kq is clearly the same as that of Hq , i.e. it is an energy. As any
functional belonging to the algebra G,Kq is the generator of a one-parameter continuous
group. Let us denote by τ the parameter of that group. Since Kq has the dimension of an
energy, the dimension of τ is that of a time. In terms of this new functional, transformation (43)
can be rewritten in a more compact notation as

H′
q = cosh α Hq − sinh α Kq, (46)

while Kq can easily be shown to transform as

K′
q = −sinh α Hq + cosh α Kq . (47)

Note that these transformations strictly derive from equations (20), (21).
Hence, under the dilatations and transformations (8), (10), the couple (Hq,Kq) transforms

as a 2D Minkowski vector under a Lorentz-like transformation. One easily shows that this
induces the following transformations on the group parameters t and τ , respectively, associated
with Hq and Kq

t ′ = cosh α t + sinh α τ, (48)

and

τ ′ = sinh α t + cosh α τ. (49)

Now, any functional A of the algebra G can be considered as a function of both t and τ ,
and its evolution in both times variables is given by

∂tA = {A,Hq}, (50)

and

∂τA = {A,Kq}. (51)

Let us perform a dilation transformation of parameter α on equations (50) and (51). A
simple calculation yields

∂t ′′A′ = {A′,H′
q}, (52)

and

∂τ ′′A′ = {A′,K′
q}, (53)
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where t ′′ and τ ′′ correspond to the rescaling of t ′ and τ ′ by a factor e−α:

t ′′ = e−α(cosh α t + sinh α τ), (54)

and

τ ′′ = e−α(sinh α t + cosh α τ). (55)

The necessity of rescaling the time variables comes from the fact that the spatial dilation
and laws (8), (10) do not constitute a canonical transformation in the sense of the Poisson
bracket (25). This is related to the non-conservation of the action in this transformation. The
canonical character is restored by the above time rescaling. In other words, we have proven
that the equations of evolutions generated by both Hamiltonian functionals are covariant
under transformations (8), (10) provided their respective time parameters are transformed as
prescribed by equations (54), (55).

The Schrödinger equation is a particular case of equation (50) for

A = ψ = ρ1/2 eis/h̄, (56)

and the calculation of the Poisson bracket leads to the usual form

ih̄∂tψ = − h̄2

2m
∇2ψ. (57)

Now, the wavefunction, ψ , can also be considered as a function of τ . Its evolution
equation in this parameter is easily derived from equation (51) and reads

ih̄∂τψ = − h̄2

2m
∇2ψ +

h̄2

m
ψ

∇2|ψ |
|ψ | . (58)

We shall discuss the possible physical interpretation of this equation in the following
section.

As a result of the above results, the system of equations (57) and (58) is covariant under
the space dilatations and its transform reads

ih̄∂t ′′ψ
′ = − h̄2

2m
∇2ψ ′ (59)

ih̄∂τ ′′ψ ′ = − h̄2

2m
∇2ψ ′ +

h̄2

m
ψ ′ ∇2|ψ ′|

|ψ ′| , (60)

where the transformation of the wavefunction

ψ ′ (x) = e
3α
4
[
ψ

(
e

α
2 x

)] 1+e−α

2
[
ψ∗(e

α
2 x

)] 1−e−α

2 (61)

directly derives from the dilatation laws (8), (10). The nonlinearity of transformation (61)
is remarkable and contrasts with the linear transformation rules that generally are assumed
in the studies of invariance groups of the Schrödinger equation [30–32]. The reason for
that difference clearly appears when considering among others the article by Havas [30]. In
this work, the transformation rules of both the classical Hamilton–Jacobi and the Schrödinger
equations under spatial dilatations and, more generally under the conformal group, are studied.
When considering the transformation of the Hamilton–Jacobi equation, the classical action s is
supposed to transform as prescribed in our equation (10). However, when the transformation
of the Schrödinger equation under dilatations is considered, only a restricted form of this
transformation is considered leading to the fact that the ψ function transforms as the square
root of a density, i.e. as ρ

1
2 . This hypothesis does not take into account the fact that ψ , as

given by equation (56), is a function of both ρ
1
2 and s. As s in the quantum case obeys
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a modified Hamilton–Jacobi equation (41), there is no reason to assume that this quantity
does not transform under dilatations. The reason to discard the transformation of s in the
wavefunction in the above-mentioned studies is unclear but it is perhaps related to the fact
that this quantity appears in ψ via a complex phase factor of modulus 1. However, there
is no fundamental argument that can support this hypothesis when the Schrödinger equation
is decomposed in terms of the continuity equation (26) and the modified Hamilton–Jacobi
equation (41).

Before ending this paper, another approach to the transformations (46), (47) should be
mentioned. This was in fact the first we considered chronologically. These transformation
rules can, indeed, be generated by the following element of the algebra G whose definition is

S =
∫

d3x ρ(x)s(x). (62)

It represents the average on the position ensemble of the classical action or, up to a factor
h̄, the ensemble average of the quantum phase.

An easy calculation using definition (25) of the functional Poisson bracket gives

{S,Hq} =
∫

d3x

[
ρ|∇s|2

2m
− h̄2

2m
|∇ρ1/2|2

]
= Kq, (63)

and

{S,Kq} =
∫

d3x

[
ρ|∇s|2

2m
+

h̄2

2m
|∇ρ1/2|2

]
= Hq . (64)

The infinitesimal transformation for the parameter δα generated by S of any element A
of the algebra G is defined as

A′ = A + δα{A,S}. (65)

Let us apply (65) respectively to both Hq and Kq . It is easily shown that after
exponentiating these infinitesimal transformations in order to generate the transformation for
finite values of α one recovers equations (46) and (47). As a consequence, transformations (20)
and (21) are also recovered.

Note also that both generators Hq and Kq tend to Hcl for h̄ → 0, i.e. the times evolution
in t and τ become identical in the classical limit. Moreover, the transformation of the time
variables (54), (55) become the identity transformation for the unique time parameter. This
seems to indicate that the finiteness of h̄ is lifting a degeneracy that is intrinsical to classical
mechanics, and splits the two time variables or as we shall argue in the following section,
splits two family of processes of different natures.

Another remarkable property that can be derived from the above relations is the fact that
Hq + iKq is a holomorphic function of t + iτ .

5. Discussion of the nonlinear Schrödinger equation and conclusions

The nonlinear Schrödinger equation (58) in the variable τ , obtained here as a companion to
the usual linear Schrödinger equation in the time t, is not a newcomer in physics. It has
been postulated, though in the time t variable and in different contexts, by several authors
[29, 33, 34]. It belongs to the class of Weinberg’s nonlinear Schrödinger equations [35]. This
equation admits a nonlinear superposition principle [15]. It has been studied as a member
of the general class of nonlinear Schrödinger equations generated by the so-called nonlinear
gauge transformations introduced by Doebner and Goldin [14]. The evolution generated by
this equation in the τ variable is non-unitary as Kq cannot be reduced to the quantum average
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of a Hermitian operator. In addition, one easily shows that together with the functionals of the
algebra G generating translations, rotations and Galilean boosts, Kq constitutes a functional
canonical representation in G of the Galilei algebra. This means that equation (58) is Galilean
invariant. Another important property is that equation (58) also implies the continuity equation
for the probability density function ρ. Hence, though non-unitary, this equation obeys minimal
physical requirements such as Galilean invariance and the equation of continuity.

What is the physical meaning of equation (58) and of the temporal parameter τ? In
relation with this question, it is intriguing to note that, for a free particle, in the τ evolution the
product (∂τ�x2)(∂τ�p2) is always negative. This is reminiscent of the process of state vector
reduction in position measurement in which �x2 → 0, while �p2 → +∞, or conversely
if one is measuring momentum. Would this τ evolution be related in some way to the non-
unitary process that physicists like Penrose [36] are trying to identify for the description of the
wavefunction collapse? We present now some arguments in that direction.

First, let us discuss the physical meaning of the second time variable, τ . The calculation
of the crossed-time derivative of any functional A gives

(∂t∂τ − ∂τ ∂t )A = {{Hq,Kq},A}. (66)

The right-hand side of the above equation is generally different from zero for most
functionals A. This means that the two times cannot be considered as two independent
variables. An example is given by the case where A is �x2, where a sum over k running from
1 to 3 is taken into account in �x2:

(∂t∂τ − ∂τ ∂t )�x2 = 8h̄2

m2

∫
d3x|∇ρ1/2|2. (67)

The only conclusion that can be drawn from this constatation is that both time variables
t and τ represent the same physical time, however, the processes they parametrize are of
different natures and cannot occur simultaneously for a given physical system. An analogous
situation would be the situation in which a particle is submitted during a first lapse of time �t1

to an external potential V1 and, then, during a consecutive time interval �t2 it is submitted to
a different external potential V2.

Clearly, the two time intervals could not overlap finitely. In the opposite case, since the
Hamiltonians corresponding to both potentials are different and do not generally commute,
we would be confronted to the non-commutativity of the crossed-times derivative. In other
terms, a given system cannot be submitted to different evolutions simultaneously! This could
seem obvious, but in our case, this sheds another light on our results.

A non-unitary evolution process generated by Kq is, thus, expected to follow or precede
a unitary process governed by Hq .

Next, let us discuss the nature of these non-unitary processes. They are solutions of the
nonlinear Schrödinger equation (58). It is known that this equation, and its complex conjugate,
can be exactly linearized [14, 15]. Indeed, in terms of the following two functions ϕ and ϕ̂:

ϕ = ρ1/2 es/h̄ (68)

ϕ̂ = ρ1/2 e−s/h̄ (69)

the system of equation (58) and its complex conjugate transform in

h̄∂τϕ = h̄2

2m
∇2ϕ (70)

h̄∂τ ϕ̂ = − h̄2

2m
∇2ϕ̂, (71)

i.e., a forward and a backward diffusion equations.
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These equations are often considered as deriving from the usual linear Schrödinger
equation by replacing t by −it . This leads to what is called the Euclidean quantum mechanics.

An interesting property of this system of equations is that, in contrast with the usual
Schrödinger equation, it admits a class of solutions corresponding to an initial function and
a final function that are prescribed. These are the so-called Bernstein diffusion processes
[21]. This type of solutions has been first contemplated by Schrödinger himself [18] for the
diffusion equation. He was, in fact, trying to see whether the Schrödinger equation also could
admit such solutions in order to explain the paradoxes of the quantum coherence and of the
wavefunction collapse. However, the unitarity of the processes described by the Schrödinger
equation excludes such solutions. Zambrini and collaborators [19, 20] have clarified the status
of these solutions for the forward and backward diffusion equations. They proved the existence
and unicity of these solutions for any couple of given well-behaved initial and final functions.

This leads us to conclude that processes like the wavefunction collapse due to a
measurement could belong to that class of Bernstein solutions of the nonlinear equation (58).
Indeed, in such a process the initial state is specified, but the reduced final state is in some
sense prepared by the operation of measurement. This hypothesis is at the focus of our present
investigation, and its results will be exposed in a forthcoming publication.

In conclusion, the requirement of covariance under space dilatations that preserve
the Heisenberg inequality leads not only to the unitary processes described by the usual
quantum mechanics, it also generates an equation describing non-unitary processes that could
correspond to the collapse processes. Both types of processes can occur only in succession
and are coupled in the scale transformations corresponding to our postulate. More work on
this question is necessary and study of experimental situations where this interpretation could
be verified will be carried out.

Another interesting question emerging from the above framework concerns the
consequences of requiring local invariance under dilatations (8), (10), i.e. dilatations with
space-dependent parameter α(x). Would this requirement result in the existence of a new
fundamental interaction field?

Finally, the most exciting question is about the picture of spacetime that would emerge
from the combination of the special or general relativity invariance with the quantum invariance
described here.
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